Well-posedness for the Schrödinger-Korteweg-de Vries system
نویسندگان
چکیده
منابع مشابه
Global Well-posedness for Periodic Generalized Korteweg-de Vries Equation
In this paper, we show the global well-posedness for periodic gKdV equations in the space H(T), s ≥ 1 2 for quartic case, and s > 5 9 for quintic case. These improve the previous results of Colliander et al in 2004. In particular, the result is sharp in the quartic case.
متن کاملGlobal well-posedness for dissipative Korteweg-de Vries equations
This paper is devoted to the well-posedness for dissipative KdV equations ut+uxxx+|Dx| u+uux = 0, 0 < α ≤ 1. An optimal bilinear estimate is obtained in Bourgain’s type spaces, which provides global wellposedness in Hs(R), s > −3/4 for α ≤ 1/2 and s > −3/(5−2α) for α > 1/2.
متن کاملGlobal well-posedness of korteweg-de vries equation in ...
We prove that the Korteweg-de Vries initial-value problem is globally well-posed in H−3/4(R) and the modified Korteweg-de Vries initial-value problem is globally well-posed in H1/4(R). The new ingredient is that we use directly the contraction principle to prove local well-posedness for KdV equation at s = −3/4 by constructing some special resolution spaces in order to avoid some ’logarithmic d...
متن کاملGlobal well posedness and inviscid limit for the Korteweg-de Vries-Burgers equation
Considering the Cauchy problem for the Korteweg-de Vries-Burgers equation ut + uxxx + ǫ|∂x| u+ (u)x = 0, u(0) = φ, where 0 < ǫ, α ≤ 1 and u is a real-valued function, we show that it is globally well-posed in Hs (s > sα), and uniformly globally well-posed in H s (s > −3/4) for all ǫ ∈ (0, 1). Moreover, we prove that for any T > 0, its solution converges in C([0, T ]; Hs) to that of the KdV equa...
متن کاملGlobal well-posedness and inviscid limit for the modified Korteweg-de Vries-Burgers equation
Considering the Cauchy problem for the modified Korteweg-de Vries-Burgers equation ut + uxxx + ǫ|∂x| u = 2(u)x, u(0) = φ, where 0 < ǫ, α ≤ 1 and u is a real-valued function, we show that it is uniformly globally well-posed in Hs (s ≥ 1) for all ǫ ∈ (0, 1]. Moreover, we prove that for any s ≥ 1 and T > 0, its solution converges in C([0, T ]; Hs) to that of the MKdV equation if ǫ tends to 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2007
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-07-04239-0